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Opinion
Glossary

Arbuscular mycorrhizal (AM) fungi: soil fungi forming a mycorrhizal symbiosis

with a majority of vascular plants by colonizing roots and providing various

benefits in exchange for plant carbon. These fungi belong to the phylum

Glomeromycota and develop arbuscules (finely branched hyphae within the

plant cell) when colonizing plant roots. Fossil evidence indicates that they are

more than 400 million years old and lived as endophytes in ancestral vascular

plants. The Glomeromycota are made up of several families, of which the most

speciose are the Gigasporaceae, Acaulosporaceae, and Glomeraceae, the latter

subdivided in the subgroups (or clades) GlomusGroup A (GrA) and

GlomusGroup B (GrB).

Autogenic succession: successional changes that are driven by the biotic

components of communities (i.e., living organisms).

b-Diversity: degree of species turnover between local communities.

Carbon sink strength: degree to which the metabolic demands of heterotrophic

AM fungi can increase plant carbon flow to regions of the root colonized by the

fungus.

Deterministic/niche-based mechanisms: ecological mechanisms of commu-

nity assembly associated with the niche of organisms, and situations in which

community assembly can be predicted by niche requirements.

Environmental filter: feature of the environment that can exclude or include

organisms displaying specific traits or characteristics (e.g., recurrent drought in

a prairie ecosystem may filter out drought sensitive plants).

Functional trait: a physiological or morphological aspect of the phenotype of

an organism that influences survival, growth, and reproduction.

Life history strategy: describes how an organism acquires resources and

invests them into growth and reproduction, and includes trade-offs associated

with these investments.

Obligate biotroph: symbiotic (parasitic or mutualistic) organism that cannot

complete its life cycle without colonizing a living host organism.

Ontogenetic development: ontogeny traces the various successive develop-

mental stages of an organism.

Phyllosphere: plant leaf surface (sometimes extended to all aboveground

surface) that can serve as a habitat for various microorganisms.

Resource use efficiency: amount of biomass or energy that can be produced
Despite the growing appreciation for the functional di-
versity of arbuscular mycorrhizal (AM) fungi, our under-
standing of the causes and consequences of this
diversity is still poor. In this opinion article, we review
published data on AM fungal functional traits and at-
tempt to identify major axes of life history variation. We
propose that a life history classification system based on
the grouping of functional traits, such as Grime’s C-S-R
(competitor, stress tolerator, ruderal) framework, can
help to explain life history diversification in AM fungi,
successional dynamics, and the spatial structure of AM
fungal assemblages. Using a common life history clas-
sification framework for both plants and AM fungi could
also help in predicting probable species associations in
natural communities and increase our fundamental un-
derstanding of the interaction between land plants and
AM fungi.

Functional diversity in arbuscular mycorrhizal fungi: the
need for a conceptual framework
The symbiosis between plants and arbuscular mycorrhizal
(AM) fungi (phylum Glomeromycota; see Glossary) origi-
nated some 450 million years ago [1] and is thought to have
facilitated the transition of plants from water to land. This
symbiosis occurs in a majority of species in the plant
kingdom and may be a major driver of the assembly,
dynamics, and productivity of plant communities (e.g.,
[2,3]). Therefore, there is a need to understand the mecha-
nisms through which AM fungi influence a wide range of
plant responses in different environmental contexts.

The historical notion that AM fungi are a functionally
homogeneous group specialized in the provision of phos-
phorus (P) to their host plants [4] has been expanded to
consider other types of functions. It has been known for
some time that AM fungi can confer plant pathogen pro-
tection as well as improve plant tolerance to drought and
heavy metal contaminants (e.g., [5–7]). More recently, it
has been demonstrated that AM fungi may alter plant
hormone dynamics [8] as well as stabilize soil aggregates,
which could have physical and resource benefits for the
plant [9]. There is also interspecific variation for these
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functions and their attendant traits, suggesting the exis-
tence of functional trade-offs among AM fungal species
[10]. For instance, different AM fungal species can vary in
their carbon demand from host plants [11], P translocation
to roots [12], carbon storage [13], and relative investment
into extraradical versus intraradical biomass [14]. To un-
derstand the origin of this variation and to predict its
ecological consequences, it is necessary to develop a con-
ceptual framework that organizes AM fungal species
according to functional groups.

Several advantages arise from classifying AM fungal
species according to broad functional groups. Identifying
per unit resource acquired.

Root system architecture: characterization of the relative allocation of a plant

to different components of the root system (i.e., tap root, lateral roots, root

diameter classes, root hair length, and density). One can simplify root

architecture description by dichotomizing coarse versus ramified root systems;

the former refers to large diameter roots with few branches and the latter to

small diameter and highly branched roots.
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sets of correlated functional traits within each group could
help us to define major life history strategies. Those strat-
egies, in turn, could be used to predict biodiversity patterns
and successional trajectories in a tractable way. For exam-
ple, ecologists have been using r and K selection strategies
[15] to describe the early establishment of populations with
a short generation time, rapid growth, and low resource
use efficiency (i.e., r strategy), and their eventual replace-
ment by populations with delayed reproduction, high pa-
rental care, and a few large offspring (i.e., K strategy) [16].
In the case of AM fungi, as obligate plant biotrophs, an
additional challenge would be to develop a common frame-
work that categorizes both plant and AM fungal life history
strategies, because the level of matching between the life
histories of interacting plant and fungal symbionts may
predict the relative benefit that each partner will derive
from the interaction.

Frameworks that group species into functional groups
along a few trait axes have helped to summarize biological
variation and has led to the development of hypotheses to
explain the origins of functional diversity [15], the distri-
bution and abundance of species [17], and the conse-
quences of functional traits for ecosystem functioning
[18]. Of the many frameworks that have been proposed,
the r–K selection model [15] has probably been the most
influential. Nevertheless, this framework has been criti-
cized for its oversimplification of life history strategies
along a single axis that combines both disturbance and
resource availability [17]. Other models that integrate
additional axes have thus been proposed to more complete-
ly characterize diversity while at the same time remaining
simple and tractable. One example in aquatic science is the
Winemiller–Rose triangular model [19], which integrates
both disturbance frequency and predictability, thus defin-
ing three main strategies: opportunistic (highly disturbed
systems), seasonal (periodically disturbed systems), and
equilibrium (undisturbed systems). One limitation of the
triangular model, however, is that even though it provides
a clearer role for two different qualitative aspects of dis-
turbance in selecting for distinct life histories, it does not
account for additional and potentially major aspects of life
history, such as resource availability and abiotic stressors.

In plant science, Grime’s C-S-R (competitor, stress tol-
erator, ruderal) framework overcomes some limitations of
other models by classifying plant life history strategies
according to the functional traits associated with responses
to two major environmental filters, namely stress and
disturbance [20]. Stress refers to persistent adverse envi-
ronmental conditions (e.g., low soil fertility and limited
light availability), whereas disturbance refers to events
leading to significant loss of functional biomass (e.g., fire
and windthrow). The C-S-R framework identifies three
main life history strategies. ‘Competitors’ thrive in low
stress and low disturbance environments, where they gain
a competitive advantage by delaying reproduction so as to
invest in structures that optimize the acquisition of
resources [21]. ‘Stress tolerators’ endure suboptimal envir-
onments owing to resource conservation strategies, such
as the production of long-lived biomass, which increases
resource use efficiency in the long term [22,23]. ‘Ruderals’
cope with frequent disturbance by relying on high
colonization ability, rapid production of low cost biomass,
and short reproductive cycles [20,21]. According to the
framework, no species can withstand both high levels of
stress and disturbance, thus preventing the existence of a
fourth life history strategy. As a whole, the C-S-R frame-
work has been useful for understanding the assembly of
plant communities undergoing land-use change [24], and
for predicting successional trajectories of plant communi-
ties after disturbance events [25,26]. In addition to plant
studies, the C-S-R framework has been used to study
functional variations in coral reef communities [27], and
it has also been proposed as a means of studying life history
strategies of phyllosphere microorganisms [28], thus sup-
porting its generalizability to various systems. In this
opinion article, we employ the C-S-R framework as an
example of how trait-based classification approaches can
advance our knowledge of the relationship between AM
fungal life history traits, plant life history traits, and
environmental abiotic filters.

Applying the C-S-R framework to AM fungi
To better understand the biology and life history of AM
fungi requires a mycocentric perspective, that is, an appre-
ciation of AM fungi not only as plant symbionts but also as
organisms that have developed traits that maximize their
own fitness in different environments [29,30]. We must
recognize, therefore, that what benefits the plant is not
necessarily what benefits the AM fungus, and vice versa.
For example, high soil P availability may promote the
growth of the plant, but will in turn reduce the amount
of carbon transferred to the AM fungal symbiont [31].
Thus, when applying a C-S-R framework to AM fungi,
we must consider which environmental conditions cause
stress or disturbance to AM fungi, and then explore which
functional traits improve the AM fungal response to those
environmental filters (Figure 1).

Competitive AM fungi
The competitive ability of an individual derives from its
capacity to acquire growth-limiting resources. Considering
previous work on AM fungal foraging strategies, the main
growth-limiting resource for AM fungi appears to be plant-
derived carbon [32]. Consequently, competitive AM fungi
should be those with functional traits that improve carbon
acquisition from the host plant. It is generally recognized
that soil P deficiency increases the flow of plant carbon to
AM fungi [33]. Furthermore, it has also been shown that
the flow of plant carbon to the fungus is proportional to the
amount of P that the fungus returns to its host [34], thus
supporting models of metabolic coupling between carbon
and P transfer [35,36]. A high rate of P transfer to the host
is related to extraradical hyphal production [37,38] rather
than to the intensity of root colonization [12]. Hence,
competitive AM fungi are likely to be those that allocate
large quantities of carbon to growing mycelial biomass for
soil exploration and soil P solubilization. In this situation,
the trade-off traits are likely to be a lower investment in
root-borne carbon storage structures (e.g., vesicles) and a
delay in the reproductive effort.

There is evidence that AM fungi in the Gigasporaceae
family show traits associated with a competitive life
485
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Figure 1. A C-S-R triangle identifying stress and disturbance factors as well as phenotypic traits of arbuscular mycorrhizal (AM) fungi classified as competitors, stress

tolerators, or ruderals. Empirical evidence is lacking for the suggested traits highlighted in red. On the triangle, we also illustrate the corresponding plant life history

strategy that would match each fungal strategy given that preferential associations are likely between plants and fungi with similar C, S, or R strategies.
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history strategy. For example, members of the Gigaspor-
aceae invest more biomass in extraradical hyphae than in
root-borne structures, compared with other phylogenetic
groups [14,39]. Moreover, members of the Gigasporaceae
increased dramatically in abundance in nitrogen (N)-
fertilized plant communities where P availability in the
soil was limited [40]. In this case, added N increases the
carbon-fixing potential of plant hosts, which exacerbates P
limitation and consequently prompts them to provide more
carbon to their fungal symbionts. Several isotope tracer
studies have also provided direct evidence of a ‘competitive’
strategy among the Gigasporaceae, revealing that these
fungi are stronger carbon sinks for plant carbon than other
lineages [11,41]. Finally, the Gigasporaceae in temperate
ecosystems sporulate later in the growing season than AM
fungi from other taxa [42,43], which is consistent with a
competitive life history. Taken collectively, these traits
indicate that AM fungal communities in low P, or high
N-to-P, environments should favor members of the Giga-
sporaceae family owing to their shared traits related to
high carbon acquisition from their host plants.

Plant species that would benefit most from competitive
AM fungi are likely to be those with high soil P require-
ments and high carbon-fixing potential. This is likely to
exclude ruderal plants, owing to their short life cycle and
lack of nutrient limitation on disturbed, early successional
soils. Likewise, stress-tolerant plants would not fully ben-
efit from competitive AM fungi because of their low
growth rate and high resource use efficiency. Preferential
486
associations between competitive AM fungi and competi-
tive host plants are, therefore, likely, particularly under
low soil P supply. Besides their matched nutritional ben-
efits, their matched delay in reproduction effort would
allow both organisms to invest in vegetative growth so
as to derive reciprocal nutritional benefits for an extended
period of the growing season. According to functional
equilibrium models [44], this matching of functional traits
should create a positive feedback favoring dominance and
stability of both organisms in their respective communi-
ties, and delay ecological succession.

Stress-tolerant AM fungi
AM fungi are stressed, for example, when the carbon
supply from their host is consistently low. Under such
conditions, successful AM fungi may be those that use
carbon most efficiently, through the slow production of
high cost, long-lived biomass. Reduced turnover rates
should then reduce carbon costs in the long term [22].
To date, hyphal turnover rates in the order of a week have
been measured for a few AM fungal strains belonging to the
Glomeraceae [45]. Measuring turnover rates across a
broader phylogenetic spectrum may reveal that some taxa
use plant carbon more efficiently than the Glomeraceae
and, thus, correspond to a ‘stress-tolerant’ strategy. Effi-
ciency in the use of host carbon could also be expressed by
the ability of the fungus to complete its life cycle with low
biomass production, because this would reduce metabolic
maintenance costs. Producing little extraradical biomass



Opinion Trends in Plant Science September 2013, Vol. 18, No. 9
would also reduce exposure to abiotic stress agents such as
soil acidity or heavy metals.

There is some evidence that stress-tolerant strategies
do exist among AM fungal species. For example, shading
experiments have shown reduced root colonization by
whole AM fungal assemblages [46], suggesting a competi-
tive advantage for carbon-efficient strains. This is corrobo-
rated by data from [47] who reported a shift in AM fungal
community structure in response to shading. Likewise,
abiotic stress such as high soil acidity has frequently been
shown to drive AM fungal community structure [48–50].
Specifically, AM fungi belonging to the Acaulosporaceae
family are commonly reported in lower pH environments
(e.g., [48,50,51]). Also, high elevation sites with harsher
climatic conditions frequently show a higher proportion of
species belonging to the Acaulosporaceae family than is
commonly seen in grasslands. Moreover, some Acaulospor-
aceae species are found exclusively in alpine environments
[52]. Consistent with the expectation of stress tolerance,
members of this family produce less biomass (both extra-
radical hyphae and internal root structures) than members
of the Glomeraceae and Gigasporaceae [14,39].

As with competitive AM fungi, we propose that there
are likely to be preferential associations between stress-
tolerant fungi and specific plant functional groups. For
example, shade-tolerant plants will sparingly invest car-
bon in AM fungal symbionts because of their low rates of
photosynthesis [47]. Indeed, plants growing under any
adverse condition that limits carbon fixation are likely
to limit the amount of carbon supplied to the AM fungal
symbiont. Given that stress-tolerant AM fungi may be slow
to provide nutritional and other benefits to their hosts, the
initial cost of a fungal symbiont to their host may be high,
although these could be offset by their long-term benefits.
Thus, the plants that are likely to benefit the most from
stress-tolerant AM fungi are those with slow growth rates,
long life spans and resource conservation strategies: in
other words, stress-tolerant plants. It is important to note
that the predicted matching between stress-tolerating
plants and AM fungi strictly relates to the life histories
of the partners. Although AM fungi can improve plant
tolerance to various stresses such as drought or heavy
metals [5–7], the potential ability of AM fungi to alleviate
host stress is not the basis for our prediction. Instead, we
suggest that similarity in resource allocation to various
components of the life history (i.e., growth and reproduc-
tion) may lead preferential associations between stress-
tolerant plants and AM fungi.

Ruderal AM fungi
From a mycocentric perspective, disturbance occurs when
hyphal networks are broken, either by physical disruption
of the soil structure or by faunal grazing. Disturbance could
be an ecological filter selecting for ruderal traits that
enable the rapid re-establishment of functional hyphal
networks and symbiotic interactions with a plant host. A
ruderal life history could be achieved through high growth
rates and efficient hyphal fusion mechanisms by which
fragmented hyphae can be reconnected to form functional
mycelia [38]. Another way for ruderal AM fungi to
re-establish a symbiosis following disturbance is by
maximizing de novo colonization of roots by propagules.
Thus, a short life cycle leading to an early and constitutive
investment in asexual spores could be a strategy by which
ruderal AM fungi cope with disturbance. Likewise, effi-
cient healing mechanisms that prolong the viability of
colonized roots and soil hyphae that have been severed
(e.g., [42,53]) would be consistent with an AM ruderal
strategy.

Frequently tilled agricultural soils are likely to select for
ruderal AM fungal strategies. Studies have shown that
these soils tend to have low AM fungal diversity, and are
dominated by species belonging to the Glomeraceae, more
specifically to the Glomus group (Gr.) A clade (e.g.,
[54–56]). Compared with other AM fungal families, Glo-
mus Gr. A species (i) grow faster [57], (ii) fuse hyphae more
readily [53], (iii) invest earlier and more abundantly in
spore formation [43], and (iv) form cross-walls that enable
infected root pieces and severed hyphal fragments to heal
and recolonize host roots [42,53]. All of these traits are
consistent with a ruderal life history strategy. Also, the
ratio of intraradical relative to extraradical hyphal abun-
dance appears to be higher in the Glomeraceae than in
other AM fungal families [14], which may comprise a
disturbance avoidance strategy.

Ruderal AM fungi with high growth rates and short life
cycles should produce low cost, although nonenduring,
biomass. The cost of having to replace this short-lived
biomass represents, therefore, a disadvantage to long-lived
plants. Hence, ruderal plants with a similar short-term
investment in low cost biomass should preferentially in-
teract with ruderal AM fungi. Given that ruderal plants
colonize early successional habitats where soil nutrients
are rarely limiting [26], the primary benefit they derive
from AM fungi may not be P uptake, but rather an in-
creased protection against phytopathogens [58]. This is
supported by the finding that early successional ruderal
plant species may be more prone to pathogen attacks than
other plant functional groups (e.g., [59]). Accordingly,
Glomus Gr. A strains are more efficient at providing pro-
tection to plant hosts than other AM fungal lineages [39]. It
has been suggested that this protection relies partly on a
jasmonate-based plant hormonal pathway that also acti-
vates several anti-herbivore mechanisms [60]. Hence, it is
possible that ruderal AM fungi are involved in priming
plant responses against herbivores as well [61].

Despite our use of the C-S-R framework to organize
functional variation in AM fungi, we emphasize that the
aim of this opinion article is not to simplistically allocate
species or even families to C, S, or R strategy, nor to
promote the C-S-R framework as the best way to make
sense of functional diversity in the AM fungi. Rather, our
aim is to identify the traits that are likely to be the most
important components of AM fungal life histories. Like-
wise, preferential associations between plants and fungi
may not follow the idealized cases where C, S, and R plants
would interact with C, S, and R AM fungi, respectively.
Associations in nature will likely be much more complex
because (i) plants and AM fungi involved will rarely be at
any of the three extremes of the C-S-R triangle, but most of
the time will rather have an intermediate life history and
(ii) many factors, other than preferential partner selection,
487
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will influence the assembly of fungal assemblages in plant
roots (e.g., plant neighborhood, spatial constraints on fun-
gal species’ availability, stochastic events). Still, the C-S-R
framework offers a basis from which to develop a trait-
based approach for AM fungi and advance our understand-
ing of their life history strategies. In the following section,
we identify five research areas where such a better under-
standing of AM fungal life history strategies would be
particularly useful.

Potential advances in AM fungal ecology using a
trait-based approach
Preferential association patterns with host communities

Some plants and AM fungi are known to interact prefer-
entially in natural communities (e.g., [62]); however, it is as
yet unknown whether those overrepresented interactions
in communities are between symbionts that share compat-
ible life history strategies. If so, this would suggest a strong
influence of niche-based (i.e., deterministic) processes un-
derlying the assembly of plant–AM fungal communities.
Such determinism could arise either from the matching of
functional traits that optimize mutual benefits, or from
both partners being similarly filtered along environmental
gradients. Evidence for such determinism has been found
[63] in a previously described plant–AM fungal community
[64]: AM fungi from different families interacted preferen-
tially with different plant species. Given the apparent
phylogenetic conservatism of AM fungal traits at the fami-
ly level [57], these results would suggest a strong influence
of deterministic (i.e., niche-based) mechanisms driving
plant–AM fungal community assembly. Nevertheless,
the pattern described in [63] was mainly the result of
one plant species that interacted with distinct fungal
species compared with the rest of the community. Hence,
more field surveys are needed to test this hypothesis. One
fruitful avenue would be to couple data on interaction
patterns at given sites with a characterization of plant
and fungal traits from those sites, to test for correlations
between the two.

Succession patterns in AM fungal communities

A major debate in plant ecology over the past century has
been the theoretical basis for ecological succession (e.g.,
[65–68]). Although the C-S-R framework was mainly fo-
cused on describing plant history traits in contrasting
environments, it implicitly drew linkages between plant
traits and autogenic succession, particularly when recon-
ciled with a resource-based theory of competition and
succession [69,70]. From these two frameworks, the para-
digm of secondary succession that has evolved is one
whereby short-lived ruderal plants colonize newly dis-
turbed environments, to be replaced by competitive plants
that optimize resource-use over the longer term, which are
themselves eventually replaced by stress-tolerant plants
once the demand for resources exceeds supply. By exten-
sion, a C-S-R approach could provide a trait-based expla-
nation of temporal patterns that have been reported in AM
fungal communities. For example, in a microcosm succes-
sion experiment, the early stage communities were domi-
nated by Glomus mosseae [43], which is often found
dominating in agricultural fields (e.g., [54]). Similarly,
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later successional AM fungal inocula produced relatively
more soil hyphae than early successional ones [71], which
is consistent with a switch from ruderal towards competi-
tive life history traits. Finally, late successional fungi
tended to form either larger spores or sporocarps [52,72].
More studies that link AM fungal traits and succession
would help us to understand the potential interplay be-
tween plant and fungal succession and its implications for
ecosystem function.

Specificity of responses in plant–AM symbioses

A paradox of AM fungal ecology is that, although the
specificity of association between different plant and AM
fungal species is low [73], the specificity of the response to
such associations is relatively high. Thus, the fitness con-
sequences for both partners are highly dependent on the
identity of the species involved (e.g., [74,75]). This is likely
to be related to the compatibility of measurable traits in
each partner. For example, plants with coarse root systems
may be more apt to derive a P benefit, whereas those with
ramified root systems may rather derive pathogen protec-
tion from their AM fungal symbionts [58,76]. This is only
one example of how trait matching may promote mutual-
istic benefit in the symbiosis, and many possibilities can
still be explored [36]. By integrating several functional
traits into discrete life history strategies, a C-S-R frame-
work would provide a more predictive approach for study-
ing the specificity of response of various associations. Such
predictive power would be valuable for agriculture or
horticulture where best matches between various plant
and AM fungal genotypes would enhance production.

Linkages between plant and AM fungal diversity

A trait-based approach could also provide insights to link
plant and AM fungal diversity at fine spatial scales (i.e.,
within site b-diversity). It is known that AM fungal com-
munity structure is highly heterogeneous at a 1-m scale
(e.g., [77]). Given the specificity of the response of plants
towards different AM fungal species, such a spatial struc-
ture in AM fungal communities may influence plant re-
cruitment [78] and contribute to the fine-grain spatial
structure in plant communities. If there is preferential
matching between AM fungi and plant hosts with analo-
gous life histories, then it is probable that the spatial
distribution of plants and fungi are tightly linked. There
is thus an opportunity to test for such linkages in the
spatial distribution patterns of plants and AM fungi that
share similar life history strategies.

Phylogeny as a proxy for life history traits in AM fungi

We suggested above that life history traits of AM fungi may
drive their biogeography and interaction patterns with
host plant species [79]. To study the importance of this
phenomenon, we must characterize the life history strate-
gies of AM fungal species based on their functional traits.
The obvious way to achieve this is by collecting AM fungal
strains from a wide range of environments, cultivating
these strains in pure cultures, and measuring a standard-
ized set of traits. Given the enormity of this task, and
considering that many AM fungal species are difficult to
cultivate, it may be preferable to validate an established



Table 1. Examples of comparative studies with AM fungal isolatesa

Trait measured AM fungal taxa Trait value C-S-R Explanation Refs

Healing ability Glomus Gr. A Efficient healing,

rapid regrowth

R Reestablish functional mycelium after

disturbance

[53]

Gigasporaceae Efficient healing,

moderate regrowth

–

Growth rate Glomus intraradices High R Replace biomass loss after disturbance [93]

Glomus etunicatum Intermediate –

Gigaspora gigantea Low C/S

Hyphal turnover rate Glomus spp. High Rb Low resource use efficiency (i.e., high tissue

turnover rates)

[45]

Carbon sink strength Gigaspora rosea Strong C Relates to the ability of AM fungi to compete

for plant carbon

[41]

Glomus mosseae Weak S/R

Glomus intraradices Weak S/R

Hyphal fusion Glomus Gr. A Frequent R Reestablish functional mycelium after disturbance [53]

Gigasporaceae Infrequent C/S

Timing to sporulation Glomeraceae Early and constitutively R Short generation time [43,94,95]

Gigasporaceae Fall in temperate systems C Delayed reproduction to favor resource

acquisition

Acaulosporaceae Spring in temperate systems –

Biomass allocation Glomeraceae Low in soil, high in roots R Reduced exposure to soil disturbance [14,39]

Gigasporaceae High in soil, low in roots C High P acquisition and transfer to host

Acaulosporaceae Low in both soil and roots S Low metabolic costs and exposure to soil

stressing agents

aWe present functional trait values and their associated life history strategy. No C-S-R strategy is assigned to a trait value when it does not constitute an explicit prediction of

the C-S-R framework.

bMeasured turnover rates are thought to be high, but comparisons with other taxa are needed. Ruderals are likely to have the highest turnover rates.
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classification scheme that might correlate with AM fungal
life histories. As we have alluded to in previous sections,
many functional traits of AM fungi appear to be similar
among close relatives within broad phylogenetic groupings
(examples given in Table 1), particularly at the family level
[57]. Such phylogenetic conservatism indicates that phy-
logeny would be a viable proxy for predicting the life
history strategy of AM fungal species and their relative
performance in the field. For example, phylogenetic data
were recently used to show that environmental filtering
and dispersal limitations are important drivers of AM
fungal community assembly [56,80]. However, at this
stage, AM fungal phylogeny is still undergoing major
revisions [81,82]. Moreover, the Glomeraceae family is a
very heterogeneous one, with some Glomus species found
dominating mature stands [64] or late stages of AM fungal
succession [43,52]. Furthermore, considerable functional
variability has been found among isolates of the same
species in the genus Glomus [14,83]. We thus acknowledge
that an eventual mapping of life histories onto AM fungal
phylogeny will yield a portrait much more complex than
what is outlined here. Future work should capitalize on the
development of high-throughput sequencing to define a
reliable phylogeny for AM fungi (e.g., [84]) and, meanwhile,
more effort should be placed to characterize life history
traits of AM fungi with known phylogenetic affiliation.

Moving forward
The need for a trait-based approach in AM fungal ecology is
not a novel idea in the literature [85–87]. In this opinion
article, however, we argue that grounding such a trait-
based approach into an established life history classifica-
tion scheme such as the C-S-R framework can provide more
mechanistic insights about the relationship among AM
fungal traits, plants traits, and abiotic environment filters.
In addition to its potential for summarizing the ecological
niche of AM fungi based on functional traits, a C-S-R
framework (or other similar frameworks) may help us to
predict preferential associations between plant and AM
fungal species in the field, as well as the specificity of
response to these associations. Moreover, a trait-based
functional grouping may improve our understanding of
plant–AM fungal successional dynamics as well as biodi-
versity patterns in natural communities. However, moving
our understanding forward will require that progress be
made in at least two research areas.

First, it may be tenuous to compare trait values and life
history strategies of AM fungal species based on data from
disparate studies because trait variation may be biased by
differences in experimental design. We need to develop,
therefore, a standard trait database for AM fungi with
standardized protocols for plant growth conditions, host
choice, stages in ontogenic development, and other factors
that influence fungal trait states. Second, we need to refine
our understanding of the basic biology of AM fungi to link
morphology to functions that are targeted by agents of
natural selection such as plant hosts, other biota, and the
abiotic environment. For example, members of the Giga-
sporaceae tend to produce thicker walled hyphae than
members of other AM fungal families (e.g., [88]), but it
remains unknown whether this trait affects hyphal life
span, resistance to fungivores, and the efficiency of nutri-
ent translocation to hosts.

In plant science, the trait-based functional grouping is
one of the conceptual advances that spurred the rapid
expansion of databases that classify plants on the basis
489
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of their traits, the climatic and soil resource conditions
under which they grow, and the interactions between
plants and other biota [18,89]. Such databases have facili-
tated comparative studies that correlate plant functions to
their evolutionary history and their ecological conse-
quences [90,91], leading to many insights about the mech-
anisms that govern the distribution and abundance of
plants [92]. We suggest that an analogous database for
AM fungi offers similar opportunities for understanding
the causes of AM fungal distribution and abundance, and
may eventually have important ramifications for applied
fields such as agriculture and ecological restoration, where
a judicious manipulation of the symbiosis could increase
crop yields and the stability of introduced plant communi-
ties, respectively.
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